Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We construct a class of rank-one infinite measure-preserving transformations such that for each transformation T in the class, the cartesian product T × T is ergodic, but the product $T × T^{-1}$ is not. We also prove that the product of any rank-one transformation with its inverse is conservative, while there are infinite measure-preserving conservative ergodic Markov shifts whose product with their inverse is not conservative.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
271-291
Opis fizyczny
Daty
wydano
2016
Twórcy
autor
- Yale University, New Haven, CT 06520, U.S.A.
autor
- University of Chicago, Chicago, IL 60637, U.S.A.
autor
- University of California, Berkeley, Berkeley, CA 94720, U.S.A.
autor
- Williams College, Williamstown, MA 01267, U.S.A.
autor
- University of California, Los Angeles, CA 90095-1555, U.S.A.
autor
- Department of Mathematics, Williams College, Williamstown, MA 01267, U.S.A.
autor
- Harvard University, Cambridge, MA 02138, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm6482-10-2015