Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We comment on a problem of Mazur from ``The Scottish Book" concerning second partial derivatives. We prove that if a function f(x,y) of real variables defined on a rectangle has continuous derivative with respect to y and for almost all y the function $F_{y}(x): = f'_{y}(x,y)$ has finite variation, then almost everywhere on the rectangle the partial derivative $f''_{yx}$ exists. We construct a separately twice differentiable function whose partial derivative $f'_{x}$ is discontinuous with respect to the second variable on a set of positive measure. This solves the Mazur problem in the negative.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
175-181
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Department of Applied Mathematics, Chernivtsi National University, 58-012 Chernivtsi, Ukraine
autor
- Institute of Mathematics, Cracow University of Technology, 31-155 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm141-2-3