Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We consider the following notion of largeness for subgroups of $S_{∞}$. A group G is large if it contains a free subgroup on 𝔠 generators. We give a necessary condition for a countable structure A to have a large group Aut(A) of automorphisms. It turns out that any countable free subgroup of $S_{∞}$ can be extended to a large free subgroup of $S_{∞}$, and, under Martin's Axiom, any free subgroup of $S_{∞}$ of cardinality less than 𝔠 can also be extended to a large free subgroup of $S_{∞}$. Finally, if Gₙ are countable groups, then either $∏_{n∈ℕ} Gₙ$ is large, or it does not contain any free subgroup on uncountably many generators.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
279-295
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Institute of Mathematics, Lodz University of Technology, Wólczańska 215, 93-005 Łódź, Poland
autor
- Institute of Mathematics, Lodz University of Technology, Wólczańska 215, 93-005 Łódź, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-2-7