Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We consider Boolean functions defined on the discrete cube ${-γ, γ^{-1}}ⁿ$ equipped with a product probability measure $μ^{⊗ n}$, where $μ = βδ_{-γ} + αδ_{γ^{-1}}$ and γ = √(α/β). This normalization ensures that the coordinate functions $(x_i)_{i=1,...,n}$ are orthonormal in $L₂({-γ,γ^{-1}}ⁿ,μ^{⊗ n})$. We prove that if the spectrum of a Boolean function is concentrated on the first two Fourier levels, then the function is close to a certain function of one variable. Our theorem strengthens the non-symmetric FKN Theorem due to Jendrej, Oleszkiewicz and Wojtaszczyk.
Moreover, in the symmetric case α = β = 1/2 we prove that if a [-1,1]-valued function defined on the discrete cube is close to a certain affine function, then it is also close to a [-1,1]-valued affine function.
Moreover, in the symmetric case α = β = 1/2 we prove that if a [-1,1]-valued function defined on the discrete cube is close to a certain affine function, then it is also close to a [-1,1]-valued affine function.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
253-261
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
- Institute for Mathematics and its Applications, College of Science and Engineering, University of Minnesota, 207 Church Street SE, 306 Lind Hall, Minneapolis, MN 55455, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-2-9