Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A generalization of the well-known Fibonacci sequence ${Fₙ}_{n≥0}$ given by F₀ = 0, F₁ = 1 and $F_{n+2} = F_{n+1} + Fₙ$ for all n ≥ 0 is the k-generalized Fibonacci sequence ${Fₙ^{(k)}}_{n≥-(k-2)}$ whose first k terms are 0,..., 0, 1 and each term afterwards is the sum of the preceding k terms. For the Fibonacci sequence the formula $Fₙ² + F²_{n+1}²= F_{2n+1}$ holds for all n ≥ 0. In this paper, we show that there is no integer x ≥ 2 such that the sum of the xth powers of two consecutive k-generalized Fibonacci numbers is again a k-generalized Fibonacci number. This generalizes a recent result of Chaves and Marques.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
171-188
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Departamento de Matemáticas, Universidad del Valle, Cali, Colombia
autor
- School of Mathematics, University of the Witwatersrand, P.O. Box Wits 2050, Johannesburg, South Africa
- Mathematical Institute, UNAM Juriquilla, Santiago de Querétaro, 76230 Querétaro de Arteaga, México
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-2-3