Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
An integer n is said to be y-friable if its greatest prime factor P(n) is less than y. In this paper, we study numbers of the shape n-1 when P(n) ≤ y and n ≤ x. One expects that, statistically, their multiplicative behaviour resembles that of all integers less than x. Extending a result of Basquin (2010), we estimate the mean value over shifted friable numbers of certain arithmetic functions when $(log x^{c}) ≤ y$ for some positive c, showing a change in behaviour according to whether log y/log x tends to infinity or not. In the same range in (x, y), we prove an Erdős-Kac-type theorem for shifted friable numbers, improving a result of Fouvry & Tenenbaum (1996). The results presented here are obtained using recent work of Harper (2012) on the statistical distribution of friable numbers in arithmetic progressions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
149-164
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Centre de recherches mathématiques, Université de Montréal, CP 6128, succ. Centre-Ville, Montréal H3C 3J7, Canada
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-2-1