Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Suppose that N is an odd perfect number and $q^{α}$ is a prime power with $q^{α} || N$. Define the index $m = σ(N/q^{α})/q^{α}$. We prove that m cannot take the form $p^{2u}$, where u is a positive integer and 2u+1 is composite. We also prove that, if q is the Euler prime, then m cannot take any of the 30 forms q₁, q₁², q₁³, q₁⁴, q₁⁵, q₁⁶, q₁⁷, q₁⁸, q₁q₂, q₁²q₂, q₁³q₂, q₁⁴ q₂, q₁⁵q₂, q₁²q₂², q₁³q₂², q₁⁴q₂², q₁q₂q₃, q₁²q₂q₃, q₁³q₂q₃, q₁⁴q₂q₃, q₁²q₂²q₃, q₁²q₂²q₃², q₁q₂q₃q₄, q₁²q₂q₃q₄, q₁³q₂q₃q₄, q₁²q₂²q₃q₄, q₁q₂q₃q₄q₅, q₁²q₂q₃q₄q₅, q₁q₂q₃q₄q₅q₆, q₁q₂q₃q₄q₅q₆q₇, where q₁, q₂, q₃, q₄, q₅, q₆, q₇ are distinct odd primes. A similar result is proved if q is not the Euler prime. These extend recent results of Broughan, Delbourgo, and Zhou. We also pose a related problem.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
41-49
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- School of Mathematical Sciences, Soochow University, Suzhou 215006, China
autor
- School of Mathematical Sciences, and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-4