Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 135 | 2 | 201-209
Tytuł artykułu

On the index of length four minimal zero-sum sequences

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let G be a finite cyclic group. Every sequence S over G can be written in the form $S = (n₁g)·...·(n_{l}g)$ where g ∈ G and $n₁,..., n_{l}i ∈ [1,ord(g)]$, and the index ind(S) is defined to be the minimum of $(n₁+ ⋯ +n_{l})/ord(g)$ over all possible g ∈ G such that ⟨g⟩ = G. A conjecture says that every minimal zero-sum sequence of length 4 over a finite cyclic group G with gcd(|G|,6) = 1 has index 1. This conjecture was confirmed recently for the case when |G| is a product of at most two prime powers. However, the general case is still open. In this paper, we make some progress towards solving the general case. We show that if G = ⟨g⟩ is a finite cyclic group of order |G| = n such that gcd(n,6) = 1 and S = (x₁g)·(x₂g)·(x₃g)·(x₄g) is a minimal zero-sum sequence over G such that x₁,...,x₄ ∈ [1,n-1] with gcd(n,x₁,x₂,x₃,x₄) = 1, and $gcd(n,x_{i}) > 1$ for some i ∈ [1,4], then ind(S) = 1. By using a new method, we give a much shorter proof to the index conjecture for the case when |G| is a product of two prime powers.
Słowa kluczowe
Rocznik
Tom
135
Numer
2
Strony
201-209
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
  • Faculty of Science, Jiangsu University, Zhenjiang, 212013, Jiangsu Prov., China
autor
  • Faculty of Science, Jiangsu University, Zhenjiang, 212013, Jiangsu Prov., China
autor
  • Department of Mathematics, Brock University, St. Catharines, ON, Canada L2S 3A1
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-2-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.