Warianty tytułu
Języki publikacji
Abstrakty
For a symmetric cellular algebra, we study properties of the dual basis of a cellular basis first. Then a nilpotent ideal is constructed. The ideal connects the radicals of cell modules with the radical of the algebra. It also yields some information on the dimensions of simple modules. As a by-product, we obtain some equivalent conditions for a finite-dimensional symmetric cellular algebra to be semisimple.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
67-83
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P.R. China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-5