Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let
$f(x) = xⁿ + k_{n-1}x^{n-1} + k_{n-2}x^{n-2} + ⋯ +k₁x + k₀ ∈ ℤ[x]$,
where
$3 ≤ k_{n-1} ≤ k_{n-2} ≤ ⋯ ≤ k₁ ≤ k₀ ≤ 2k_{n-1} - 3$.
We show that f(x) and f(x²) are irreducible over ℚ. Moreover, the upper bound of $2k_{n-1} - 3$ on the coefficients of f(x) is the best possible in this situation.
$f(x) = xⁿ + k_{n-1}x^{n-1} + k_{n-2}x^{n-2} + ⋯ +k₁x + k₀ ∈ ℤ[x]$,
where
$3 ≤ k_{n-1} ≤ k_{n-2} ≤ ⋯ ≤ k₁ ≤ k₀ ≤ 2k_{n-1} - 3$.
We show that f(x) and f(x²) are irreducible over ℚ. Moreover, the upper bound of $2k_{n-1} - 3$ on the coefficients of f(x) is the best possible in this situation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
113-119
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.
autor
- Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-9