Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let (Ω,Σ,μ) be a probability space, X a Banach space, and L₁(μ,X) the Banach space of Bochner integrable functions f:Ω → X. Let W = {f ∈ L₁(μ,X): for a.e. ω ∈ Ω, ||f(ω)|| ≤ 1}. In this paper we characterize the weakly precompact subsets of L₁(μ,X). We prove that a bounded subset A of L₁(μ,X) is weakly precompact if and only if A is uniformly integrable and for any sequence (fₙ) in A, there exists a sequence (gₙ) with $gₙ ∈ co{f_i: i ≥ n}$ for each n such that for a.e. ω ∈ Ω, the sequence (gₙ(ω)) is weakly Cauchy in X. We also prove that if A is a bounded subset of L₁(μ,X), then A is weakly precompact if and only if for every ϵ >0, there exist a positive integer N and a weakly precompact subset H of NW such that A ⊆ H + ϵB(0), where B(0) is the unit ball of L₁(μ,X).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
133-143
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Mathematics Department, University of Wisconsin-River Falls, River Falls, WI 54022, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-10