Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove that if 𝔠 is not a Kunen cardinal, then there is a uniform Eberlein compact space K such that the Banach space C(K) does not embed isometrically into $ℓ_∞/c₀$. We prove a similar result for isomorphic embeddings. Our arguments are minor modifications of the proofs of analogous results for Corson compacta obtained by S. Todorčević. We also construct a consistent example of a uniform Eberlein compactum whose space of continuous functions embeds isomorphically into $ℓ_∞/c₀$, but fails to embed isometrically. As far as we know it is the first example of this kind.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
187-195
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warszawa, Poland
autor
- Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-4