Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We investigate the distribution of $Φ(n) = 1+ ∑_{i=1}ⁿ φ(i)$ (which counts the number of Farey fractions of order n) in residue classes. While numerical computations suggest that Φ(n) is equidistributed modulo q if q is odd, and is equidistributed modulo the odd residue classes modulo q when q is even, we prove that the set of integers n such that Φ(n) lies in these residue classes has a positive lower density when q = 3,4. We also provide a simple proof, based on the Selberg-Delange method, of a result of T. Dence and C. Pomerance on the distribution of φ(n) modulo 3.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
115-127
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, U.S.A.
autor
- Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, U.S.A.
autor
- Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-8