Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A module M is called finendo (cofinendo) if M is finitely generated (respectively, finitely cogenerated) over its endomorphism ring. It is proved that if R is any hereditary ring, then the following conditions are equivalent: (a) Every right R-module is finendo; (b) Every left R-module is cofinendo; (c) R is left pure semisimple and every finitely generated indecomposable left R-module is cofinendo; (d) R is left pure semisimple and every finitely generated indecomposable left R-module is finendo; (e) R is of finite representation type. Moreover, if R is an arbitrary ring, then (a) ⇒ (b) ⇔ (c), and any ring R satisfying (c) has a right Morita duality.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
155-176
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Department of Mathematics, Ohio University-Zanesville, Zanesville, OH 43701, U.S.A.
autor
- Department of Mathematics, University of Murcia, 30100 Espinardo, Murcia, Spain
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-1