Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A ring R is called Armendariz (resp., Armendariz of power series type) if, whenever $(∑_{i≥0} a_i x^i)(∑_{j≥0} b_j x^j) = 0$ in R[x] (resp., in R[[x]]), then $a_i b_j = 0$ for all i and j. This paper deals with a unified generalization of the two concepts (see Definition 2). Some known results on Armendariz rings are extended to this more general situation and new results are obtained as consequences. For instance, it is proved that a ring R is Armendariz of power series type iff the same is true of R[[x]]. For an injective endomorphism σ of a ring R and for n ≥ 2, it is proved that R[x;σ]/(xⁿ) is Armendariz iff it is Armendariz of power series type iff σ is rigid in the sense of Krempa.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
151-168
Opis fizyczny
Daty
wydano
2008
Twórcy
autor
- Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
- Member of, Mathematics Division (Taipei Office), National Center for Theoretical Sciences
autor
- Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NF, Canada A1C 5S7
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm113-1-9