Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Given a module M over a domestic canonical algebra Λ and a classifying set X for the indecomposable Λ-modules, the problem of determining the vector $m(M) = (m_{x})_{x∈X} ∈ ℕ^{X}$ such that $M ≅ ⨁_{x∈X} X_{x}^{m_{x}}$ is studied. A precise formula for $dim_{k} Hom_{Λ}(M,X)$, for any postprojective indecomposable module X, is computed in Theorem 2.3, and interrelations between various structures on the set of all postprojective roots are described in Theorem 2.4. It is proved in Theorem 2.2 that a general method of finding vectors m(M) presented by the authors in Colloq. Math. 107 (2007) leads to algorithms with the complexity $𝒪((dim_{k} M)⁴)$. A precise description of algorithms determining the multiplicities $m(M)_{x}$ for postprojective roots x ∈ X is given (Algorithms 6.1, 6.2 and 6.3).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
221-282
Opis fizyczny
Daty
wydano
2008
Twórcy
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-6