Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let p be a rational prime, G a group of order p, and K a number field containing a primitive pth root of unity. We show that every tamely ramified Galois extension of K with Galois group isomorphic to G has a normal integral basis if and only if for every Galois extension L/K with Galois group isomorphic to G, the ring of integers $O_{L}$ in L is free as a module over the associated order $𝓐_{L/K}$. We also give examples, some of which show that this result can still hold without the assumption that K contains a primitive pth root of unity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
217-223
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Department of Mathematics, College of Charleston, 66 George Street, Charleston, SC 29424-0001, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm108-2-5