Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Let 𝕋 denote the set of complex numbers of modulus 1. Let v ∈ 𝕋, v not a root of unity, and let T: 𝕋 → 𝕋 be the transformation on 𝕋 given by T(z) = vz. It is known that the problem of calculating the outer measure of a T-invariant set leads to a condition which formally has a close resemblance to Carathéodory's definition of a measurable set. In ergodic theory terms, T is not weakly mixing. Now there is an example, due to Kakutani, of a transformation ψ̃ which is weakly mixing but not strongly mixing. The results here show that the problem of calculating the outer measure of a ψ̃-invariant set leads to a condition formally resembling the Carathéodory definition, as in the case of the transformation T. The methods used bring out some of the more detailed behaviour of the Kakutani transformation. The above mentioned results for T and the Kakutani transformation do not apply for the strongly mixing transformation z ↦ z² on 𝕋.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
317-328
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Institut für Mathematik, Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 2-6, 14195 Berlin, Germany
autor
- School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522 Australia
autor
- School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522 Australia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm108-2-13