Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 108 | 1 | 105-118
Tytuł artykułu

On the arithmetic of arithmetical congruence monoids

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of $ℤ_b = ℤ/bℤ$, then the set $H_Γ = {x ∈ ℕ | x + bℤ ∈ Γ} ∪ {1}$ is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If $H_Γ$ is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ {1}, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM which admits unique factorization of elements into products of irreducibles is M(1,2) = M(3,2). In this paper, we examine further factorization properties of ACMs. We find necessary and sufficient conditions for an ACM M(a,b) to be half-factorial (i.e., lengths of irreducible factorizations of an element remain constant) and further determine conditions for M(a,b) to have finite elasticity. When the elasticity of M(a,b) is finite, we produce a formula to compute it. Among our remaining results, we show that the elasticity of an ACM M(a,b) may not be accepted and show that if an ACM M(a,b) has infinite elasticity, then it is not fully elastic.
Słowa kluczowe
Rocznik
Tom
108
Numer
1
Strony
105-118
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
  • Department of Mathematics, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, U.S.A.
  • Department of Mathematics, University of California at Santa Barbara, Santa Barbara, CA 93106, U.S.A.
autor
  • Department of Mathematics, The University of Iowa, 14 MacLean Hall, Iowa City, IA 52242, U.S.A.
  • Mathematics Department, MS 136, Rice University, 6100 S. Main St., Houston, TX 77005-1892, U.S.A.
  • Department of Mathematics, Trinity University, One Trinity Place, San Antonio, TX 78212-7200, U.S.A.
autor
  • Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, U.S.A.
  • Mathematics Department, University of California at Los Angeles, Box 951555, Los Angeles, CA 90095-1555, U.S.A
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm108-1-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.