Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Using geometrical methods, Huisgen-Zimmermann showed that if M is a module with simple top, then M has no proper degeneration $M <_{deg} N$ such that $𝔯^{t}M/𝔯^{t+1}M ≃ 𝔯^{t}N/𝔯^{t+1}N$ for all t. Given a module M with square-free top and a projective cover P, she showed that $dim_{k}Hom(M,M) = dim_{k}Hom(P,M)$ if and only if M has no proper degeneration $M <_{deg} N$ where M/𝔯M ≃ N/𝔯N. We prove here these results in a more general form, for hom-order instead of degeneration-order, and we prove them algebraically. The results of Huisgen-Zimmermann follow as consequences from our results. In particular, we find that her second result holds not just for modules with square-free top, but also for indecomposable modules in general.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
63-71
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Department of Mathematical Sciences, University of Science and Technology, N-7491 Trondheim, Norway
autor
- Department of Mathematical Sciences, University of Science and Technology, N-7491 Trondheim, Norway
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm108-1-6