Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A measure is called $L^{p}$-improving if it acts by convolution as a bounded operator from $L^{p}$ to $L^{q}$ for some q > p. Positive measures which are $L^{p}$-improving are known to have positive Hausdorff dimension. We extend this result to complex $L^{p}$-improving measures and show that even their energy dimension is positive. Measures of positive energy dimension are seen to be the Lipschitz measures and are characterized in terms of their improving behaviour on a subset of $L^{p}$-functions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
73-86
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 Canada
autor
- Department of Mathematics, Chalmers TH and Göteborg University, Eklandagatan 86, Göteborg, SE 412 96 Sweden
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm102-1-7