Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let R be a commutative Noetherian ring. Let 𝔞 and 𝔟 be ideals of R and let N be a finitely generated R-module. We introduce a generalization of the 𝔟-finiteness dimension of $f^{𝔟}_{𝔞}(N)$ relative to 𝔞 in the context of generalized local cohomology modules as
$f^{𝔟}_{𝔞}(M,N): = inf{i ≥ 0 | 𝔟 ⊆ √(0:_R H^{i}_{𝔞}(M,N))}$,
where M is an R-module. We also show that $f^{𝔟}_{𝔞}(N) ≤ f^{𝔟}_{𝔞}(M,N)$ for any R-module M. This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.
$f^{𝔟}_{𝔞}(M,N): = inf{i ≥ 0 | 𝔟 ⊆ √(0:_R H^{i}_{𝔞}(M,N))}$,
where M is an R-module. We also show that $f^{𝔟}_{𝔞}(N) ≤ f^{𝔟}_{𝔞}(M,N)$ for any R-module M. This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
213-219
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Institute for Studies in, Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran
autor
- Department of Mathematics, Mashhad University, P.O. Box 1159-91775, Mashhad, Iran
autor
- Department of Mathematics, Mashhad University, P.O. Box 1159-91775, Mashhad, Iran
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-5