Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We consider the poset of all non-empty finite subsets of the set of natural numbers, use the poset structure to topologise it with the Alexandrov topology, and call the thus obtained topological space $ℙ^∞$ the universal partition space. Then we show that it is a classifying space for finite closed coverings of compact quantum spaces in the sense that any such a covering is functorially equivalent to a sheaf over this partition space. In technical terms, we prove that the category of finitely supported flabby sheaves of algebras is equivalent to the category of algebras with a finite set of ideals that intersect to zero and generate a distributive lattice. In particular, the Gelfand transform allows us to view finite closed coverings of compact Hausdorff spaces as flabby sheaves of commutative unital C*-algebras over $ℙ^∞$.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
215-237
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8, 00-956 Warszawa, Poland
- Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski, Hoża 74, 00-682 Warszawa, Poland
autor
- Department of Mathematics and Computer Science, Bahçeşehir University, Çırağan Cad., Beşiktaş 34353 Istanbul, Turkey
autor
- Department of Theoretical Physics and Computer Science, University of Łódź, Pomorska 149/153, 90-236 Łódź, Poland
- Mathematical Institute, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc98-0-8