Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
I consider p-Bernoulli bond percolation on transitive, nonamenable, planar graphs with one end and on their duals. It is known from [BS01] that in such a graph G we have three essential phases of percolation, i.e.
$0 < p_c(G) < p_u(G) < 1$,
where $p_c$ is the critical probability and $p_u$-the unification probability. I prove that in the middle phase a.s. all the ends of all the infinite clusters have one-point boundaries in ∂ℍ². This result is similar to some results in [Lal].
$0 < p_c(G) < p_u(G) < 1$,
where $p_c$ is the critical probability and $p_u$-the unification probability. I prove that in the middle phase a.s. all the ends of all the infinite clusters have one-point boundaries in ∂ℍ². This result is similar to some results in [Lal].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
99-113
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc96-0-6