Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 96 | 1 | 215-236
Tytuł artykułu

Explicit construction of a unitary double product integral

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In analogy with earlier work on the forward-backward case, we consider an explicit construction of the forward-forward double stochastic product integral $∏^{→→}(1 + dr)$ with generator $dr = λ(dA^† ⊗ dA - dA ⊗ dA^†)$. The method of construction is to approximate the product integral by a discrete double product
$∏^{→→}_{(j,k)∈ℕ_m×ℕₙ} Γ(R_{m,n}^{(j,k)}) = Γ(∏^{→→}_{(j,k)∈ℕ_m×ℕₙ} (R_{m,n}^{(j,k)}))$
of second quantised rotations $R_{m,n}^{(j,k)}$ in different planes using the embedding of $ℂ^m ⊕ ℂⁿ$ into L²(ℝ) ⊕ L²(ℝ) in which the standard orthonormal bases of $ℂ^m$ and ℂⁿ are mapped to the orthonormal sets consisting of normalised indicator functions of equipartitions of finite subintervals of ℝ. The limits as m,n ⟶ ∞ of such double products of rotations are constructed heuristically by a new method, and are shown rigorously to be unitary operators. Finally it is shown that the second quantisations of these unitary operators do indeed satisfy the quantum stochastic differential equations defining the double product integral.
Słowa kluczowe
Rocznik
Tom
96
Numer
1
Strony
215-236
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
  • Mathematics Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, Great Britain
autor
  • Mathematics Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, Great Britain
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc96-0-14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.