Warianty tytułu
Języki publikacji
Abstrakty
This paper surveys a number of recent results obtained by C. Bereanu and the author in existence results for second order differential equations of the form
(ϕ(u'))' = f(t,u,u')
submitted to various boundary conditions. In the equation, ϕ: ℝ → ≤ ]-a,a[ is a homeomorphism such that ϕ(0) = 0. An important motivation is the case of the curvature operator, where ϕ(s) = s/√(1+s²). The problems are reduced to fixed point problems in suitable function space, to which Leray-Schauder theory is applied.
(ϕ(u'))' = f(t,u,u')
submitted to various boundary conditions. In the equation, ϕ: ℝ → ≤ ]-a,a[ is a homeomorphism such that ϕ(0) = 0. An important motivation is the case of the curvature operator, where ϕ(s) = s/√(1+s²). The problems are reduced to fixed point problems in suitable function space, to which Leray-Schauder theory is applied.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
201-214
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Université Catholique de Louvain, Département de mathématique, Chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgique
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc77-0-15