Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively:
$Sf(x) = 1/|B(0,|x|)| ∫_{B(0,|x|)} f(t)dt$, $Tf(x) = 1/|B(x,|x|)| ∫_{B(x,|x|)} f(t)dt$
for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
$Sf(x) = 1/|B(0,|x|)| ∫_{B(0,|x|)} f(t)dt$, $Tf(x) = 1/|B(x,|x|)| ∫_{B(x,|x|)} f(t)dt$
for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
237-247
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba8039-12-2015