Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove the existence of global attractors for the following semilinear degenerate parabolic equation on $ℝ^N$:
∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x),
under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method.
∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x),
under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
47-65
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
autor
- Department of Mathematics, Electric Power University, 235, Hoang Quoc Viet, Tu Liem, Hanoi, Vietnam
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-1-6