Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Certain results on extending maps taking values in Hilbert manifolds by maps which are close to being embeddings are presented. Sufficient conditions on a map under which it is extendable by an embedding are given. In particular, it is shown that if X is a completely metrizable space of topological weight not greater than α ≥ ℵ₀, A is a closed set in X and f: X → M is a map into a manifold M modelled on a Hilbert space of dimension α such that $f(X∖A) ∩ \overline{f(∂A)} = ∅$, then for every open cover 𝒰 of M there is a map g: X → M which is 𝒰-close to f (on X), coincides with f on A and is an embedding of X∖A into M. If, in addition, X∖A is a connected manifold modelled on the same Hilbert space as M, and $\overline{f(∂A)}$ is a Z-set in M, then the above map g may be chosen so that $g|_{X∖A}$ be an open embedding.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
295-306
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Instytut Matematyki, Wydział Matematyki i Informatyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba60-3-9