Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For one-dimensional Dirac operators of the form
$Ly = i\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} dy/dx + vy$, $v = \begin{pmatrix) 0& Q\\ P & 0\end{pmatrix}$, $y = \begin{pmatrix}y₁\\y₂\end{pmatrix}$, x ∈ ℝ,
we single out and study a class X of π-periodic potentials v whose smoothness is determined only by the rate of decay of the related spectral gaps γₙ = |λ⁺ₙ - λ¯ₙ|, where $λₙ^{±}$ are the eigenvalues of L = L(v) considered on [0,π] with periodic (for even n) or antiperiodic (for odd n) boundary conditions.
$Ly = i\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} dy/dx + vy$, $v = \begin{pmatrix) 0& Q\\ P & 0\end{pmatrix}$, $y = \begin{pmatrix}y₁\\y₂\end{pmatrix}$, x ∈ ℝ,
we single out and study a class X of π-periodic potentials v whose smoothness is determined only by the rate of decay of the related spectral gaps γₙ = |λ⁺ₙ - λ¯ₙ|, where $λₙ^{±}$ are the eigenvalues of L = L(v) considered on [0,π] with periodic (for even n) or antiperiodic (for odd n) boundary conditions.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
59-75
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey
autor
- Department of Mathematics, The Ohio State University, 231 West 18th Ave., Columbus, OH 43210, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba60-1-5