Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let f be a conditionally symmetric martingale and let S(f) denote its square function.
(i) For p,q > 0, we determine the best constants $C_{p,q}$ such that
$sup_n 𝔼 (|fₙ|^p)/(1+Sₙ²(f))^q ≤ C_{p,q}$.
Furthermore, the inequality extends to the case of Hilbert space valued f.
(ii) For N = 1,2,... and q > 0, we determine the best constants $C'_{N,q}$ such that
$sup_n 𝔼 (fₙ^{2N-1})(1+Sₙ²(f))^q ≤ C'_{N,q}$.
These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if the conditional symmetry is not assumed.
(i) For p,q > 0, we determine the best constants $C_{p,q}$ such that
$sup_n 𝔼 (|fₙ|^p)/(1+Sₙ²(f))^q ≤ C_{p,q}$.
Furthermore, the inequality extends to the case of Hilbert space valued f.
(ii) For N = 1,2,... and q > 0, we determine the best constants $C'_{N,q}$ such that
$sup_n 𝔼 (fₙ^{2N-1})(1+Sₙ²(f))^q ≤ C'_{N,q}$.
These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if the conditional symmetry is not assumed.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
65-77
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba58-1-8