Czasopismo
Tytu艂 artyku艂u
Autorzy
Warianty tytu艂u
J臋zyki publikacji
Abstrakty
We present an extension of the classical isomorphic classification of the Banach spaces C([0,伪]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,伪]. As an application, we establish the isomorphic classification of the Banach spaces $C(2^{饾敧} 脳 [0,伪])$ of all real continuous functions defined on the compact spaces $2^{饾敧} 脳 [0,伪]$, the topological product of the Cantor cubes $2^{饾敧}$ with 饾敧 smaller than the first sequential cardinal, and intervals of ordinal numbers [0,伪]. Consequently, it is relatively consistent with ZFC that this yields a complete isomorphic classification of $C(2^{饾敧} 脳 [0,伪])$ spaces.
S艂owa kluczowe
Rocznik
Tom
Numer
Strony
279-287
Opis fizyczny
Daty
wydano
2009
Tw贸rcy
autor
- Department of Mathematics, University of S茫o Paulo, S茫o Paulo, Brazil 05508-090
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-9