Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
This paper treats the question of the existence of solutions of a fourth order boundary value problem having the following form:
$x^{(4)}(t) + f(t,x(t),x''(t)) = 0$, 0 < t < 1,
x(0) = x'(0) = 0, x''(1) = 0, $x^{(3)}(1) = 0$.
Boundary value problems of very similar type are also considered. It is assumed that f is a function from the space C([0,1]×ℝ²,ℝ). The main tool used in the proof is the Leray-Schauder nonlinear alternative.
$x^{(4)}(t) + f(t,x(t),x''(t)) = 0$, 0 < t < 1,
x(0) = x'(0) = 0, x''(1) = 0, $x^{(3)}(1) = 0$.
Boundary value problems of very similar type are also considered. It is assumed that f is a function from the space C([0,1]×ℝ²,ℝ). The main tool used in the proof is the Leray-Schauder nonlinear alternative.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
135-148
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Département de Mathématiques, Faculté des Sciences, Université d'Oran, B.P. 1524 Es-Senia, Oran, Algeria
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-2-7