Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Applying results of the infinitary Ramsey theory, namely the dichotomy principle of Galvin-Prikry, we show that for every sequence $(α_{j})_{j=1}^{∞}$ of scalars, there exists a subsequence $(α_{k_j})_{j=1}^{∞}$ such that either every subsequence of $(α_{k_j})_{j=1}^{∞}$ defines a universal series, or no subsequence of $(α_{k_j})_{j=1}^{∞}$ defines a universal series. In particular examples we decide which of the two cases holds.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
93-104
Opis fizyczny
Daty
wydano
2008
Twórcy
autor
- Department of Mathematics, Athens University, Panepistemiopolis, 15784 Athens, Greece
autor
- Department of Mathematics, Athens University, Panepistemiopolis, 15784 Athens, Greece
- Department of Mathematics and Statistics, University of Cyprus, 1678 Nicosia, Cyprus
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-1