Warianty tytułu
Języki publikacji
Abstrakty
Let K be a field and let L = K[ξ] be a finite field extension of K of degree m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials $u₀,...,u_{m-1} ∈ K[X₀,...,X_{m-1}]$ such that $f(∑_{j=0}^{m-1}ξ^{j}X_{j}) = ∑_{j=0}^{m-1}ξ^{j}u_{j}$. A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and f ≠ 0, then $u₀,...,u_{m-1}$ have no common divisor in $K[X₀,...,X_{m-1}]$ of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several variables.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
9-13
Opis fizyczny
Daty
wydano
2008
Twórcy
autor
- Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-1-2