Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For $(P_{k})$ being Rademacher, Fermion or q-Gaussian (-1 ≤ q ≤ 0) operators, we find the optimal constants $C_{2n}$, n∈ ℕ, in the inequality
$∥∑_{k=1}^{N} A_k ⊗ P_k∥_{2n} ≤ [C_{2n}]^{1/2n} max {∥(∑_{k=1}^{N} A*_k A_k}^{1/2}∥_{L_{2n}}, ∥(∑_{k=1}^{N} A_k A*_k}^{1/2}∥_{L_{2n}}}$,
valid for all finite sequences of operators $(A_{k})$ in the non-commutative $L_{2n}$ space related to a semifinite von Neumann algebra with trace. In particular, $C_{2n} = (2nr-1)!!$ for the Rademacher and Fermion sequences.
$∥∑_{k=1}^{N} A_k ⊗ P_k∥_{2n} ≤ [C_{2n}]^{1/2n} max {∥(∑_{k=1}^{N} A*_k A_k}^{1/2}∥_{L_{2n}}, ∥(∑_{k=1}^{N} A_k A*_k}^{1/2}∥_{L_{2n}}}$,
valid for all finite sequences of operators $(A_{k})$ in the non-commutative $L_{2n}$ space related to a semifinite von Neumann algebra with trace. In particular, $C_{2n} = (2nr-1)!!$ for the Rademacher and Fermion sequences.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
315-321
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-3-9