Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We revisit Kristály's result on the existence of weak solutions of the Schrödinger equation of the form
-Δu + a(x)u = λb(x)f(u), $x ∈ ℝ^N$, $u ∈ H¹(ℝ^N)$,
where λ is a positive parameter, a and b are positive functions, while $f:ℝ → ℝ$ is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri's recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.
-Δu + a(x)u = λb(x)f(u), $x ∈ ℝ^N$, $u ∈ H¹(ℝ^N)$,
where λ is a positive parameter, a and b are positive functions, while $f:ℝ → ℝ$ is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri's recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
39-43
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics and Computer Science, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-3