Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
By using the well-known Leggett–Williams multiple fixed point theorem for cones, some new criteria are established for the existence of three positive periodic solutions for a class of n-dimensional functional differential equations with impulses of the form
⎧y'(t) = A(t)y(t) + g(t,yt), $t ≠ t_{j}$, j ∈ ℤ,
⎨
⎩$y(t⁺_{j}) = y(t¯_{j}) + I_{j}(y(t_{j}))$,
where $A(t) = (a_{ij}(t))_{n×n}$ is a nonsingular matrix with continuous real-valued entries.
⎧y'(t) = A(t)y(t) + g(t,yt), $t ≠ t_{j}$, j ∈ ℤ,
⎨
⎩$y(t⁺_{j}) = y(t¯_{j}) + I_{j}(y(t_{j}))$,
where $A(t) = (a_{ij}(t))_{n×n}$ is a nonsingular matrix with continuous real-valued entries.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
169-183
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
autor
- Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
autor
- Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-6