Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The main purpose of this paper is to consider the analytic solutions of the non-homogeneous linear differential equation
$f^{(k)} + a_{k-1}(z)f^{(k-1)} + ⋯ + a₁(z)f' + a₀(z)f = F(z)$,
where all coefficients $a₀,a₁,...,a_{k-1}$, F ≢ 0 are analytic functions in the unit disc 𝔻 = {z∈ℂ: |z|<1}. We obtain some results classifying the growth of finite iterated order solutions in terms of the coefficients with finite iterated type. The convergence exponents of zeros and fixed points of solutions are also investigated.
$f^{(k)} + a_{k-1}(z)f^{(k-1)} + ⋯ + a₁(z)f' + a₀(z)f = F(z)$,
where all coefficients $a₀,a₁,...,a_{k-1}$, F ≢ 0 are analytic functions in the unit disc 𝔻 = {z∈ℂ: |z|<1}. We obtain some results classifying the growth of finite iterated order solutions in terms of the coefficients with finite iterated type. The convergence exponents of zeros and fixed points of solutions are also investigated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
51-61
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics, Nanchang University, Nanchang 330031, China
autor
- Editorial office of Journal, Nanchang University, Nanchang 330047, China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-1-4