Warianty tytułu
Języki publikacji
Abstrakty
A new lower bound for the Jung constant $JC(l^{(Φ)})$ of the Orlicz sequence space $l^{(Φ)}$ defined by an N-function Φ is found. It is proved that if $l^{(Φ)}$ is reflexive and the function tΦ'(t)/Φ(t) is increasing on $(0,Φ^{-1}(1)]$, then
$JC(l^{(Φ)}) ≥ (Φ^{-1}(1/2))/(Φ^{-1}(1))$.
Examples in Section 3 show that the above estimate is better than in Zhang's paper (2003) in some cases and that the results given in Yan's paper (2004) are not accurate.
$JC(l^{(Φ)}) ≥ (Φ^{-1}(1/2))/(Φ^{-1}(1))$.
Examples in Section 3 show that the above estimate is better than in Zhang's paper (2003) in some cases and that the results given in Yan's paper (2004) are not accurate.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
23-34
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics, University of California, Riverside, CA 92521, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-1-2