Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We study the cohomology properties of the singular foliation ℱ determined by an action Φ: G × M → M where the abelian Lie group G preserves a riemannian metric on the compact manifold M. More precisely, we prove that the basic intersection cohomology $ℍ*_{p̅}(M/ℱ)$ is finite-dimensional and satisfies the Poincaré duality. This duality includes two well known situations:
∙ Poincaré duality for basic cohomology (the action Φ is almost free).
∙ Poincaré duality for intersection cohomology (the group G is compact and connected).
∙ Poincaré duality for basic cohomology (the action Φ is almost free).
∙ Poincaré duality for intersection cohomology (the group G is compact and connected).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
203-246
Opis fizyczny
Daty
wydano
2006
Twórcy
- Laboratoire de Mathématiques de Lens EA 2462, Fédération CNRS Nord-Pas-de-Calais FR 2956, Faculté des Sciences Jean Perrin, Université d'Artois, Rue Jean Souvraz S.P. 18, 62 307 Lens Cedex, France
autor
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-3-1