Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We define in ℂⁿ the concepts of algebraic currents and Liouville currents, thus extending the concepts of algebraic complex subsets and Liouville subsets. After having shown that every algebraic current is Liouville, we characterize those positive closed currents on ℂⁿ which are algebraic. Let T be a closed positive current on ℂⁿ. We give sufficient conditions, relating to the growth of the projective mass of T, so that T is Liouville. These results generalize those previously obtained by N. Sibony and P. M. Wong, and K. Takegoshi in the geometrical case, i.e. when T=[X] is the current of integration on an analytical complex subset of ℂⁿ.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
245-271
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Faculté des Sciences de Monastir, Département de mathématiques, 5019 Monastir, Tunisie
autor
- Faculté des Sciences de Monastir, Département de mathématiques, 5019 Monastir, Tunisie
autor
- UMR CNRS 6086, Groupes de Lie et Géométrie, Mathématiques, Université de Poitiers, Téléport2-BP 30179, 86962 Futuroscope Chasseneuil, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-3-4