Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
There are two reasonable analogs of Euclidean convexity in hyperbolic geometry on the unit disk 𝔻. One is hyperbolic convexity and the other is hyperbolic 1-convexity. Associated with each type of convexity is the family of univalent holomorphic maps of 𝔻 onto subregions of the unit disk that are hyperbolically convex or hyperbolically 1-convex. The class of hyperbolically convex functions has been the subject of a number of investigations, while the family of hyperbolically 1-convex functions has received less attention. This paper is a contribution to the study of hyperbolically 1-convex functions. A main result is that a holomorphic univalent function f defined on 𝔻 with f(𝔻) ⊆ 𝔻 is hyperbolically 1-convex if and only if f/(1-wf) is a Euclidean convex function for each w ∈ 𝔻̅. This characterization gives rise to two-variable characterizations of hyperbolically 1-convex functions. These two-variable characterizations yield a number of sharp results for hyperbolically 1-convex functions. In addition, we derive sharp two-point distortion theorems for hyperbolically 1-convex functions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
185-202
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- School of Integrated Studies, Pennsylvania College of Technology, Williamsport, PA 17701, U.S.A.
autor
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, U.S.A.
autor
- Departamento de Matemáticas, Universidad Nacional de Colombia, A.A. 3840, Medellín, Colombia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap84-3-1