Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 84 | 1 | 27-39
Tytuł artykułu

Convolution theorems for starlike and convex functions in the unit disc

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f'(0) − 1 = 0. For β < 1, let
$P⁰_{β} = {f ∈ A: Re f'(z) > β, z ∈ Δ}$.
For λ > 0, suppose that 𝓕 denotes any one of the following classes of functions:
$M^{(1)}_{1,λ} = {f ∈ 𝓐 : Re{z(zf'(z))''} > -λ, z ∈ Δ}$,
$M^{(2)}_{1,λ} = {f ∈ 𝓐 : Re{z(z²f''(z))''} > -λ, z ∈ Δ}$,
$M^{(3)}_{1,λ} = {f ∈ 𝓐 : Re{1/2 (z(z²f'(z))'')' - 1} > -λ, z ∈ Δ}$.
The main purpose of this paper is to find conditions on λ and γ so that each f ∈ 𝓕 is in $𝓢_{γ}$ or $𝒦_{γ}$, γ ∈ [0,1/2]. Here $𝓢_{γ}$ and $𝒦_{γ}$ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain a number of convolution theorems, namely the inclusions $M_{1,α} ∗ 𝓖 ⊂ 𝓢_{γ}$ and $M_{1,α} ∗ 𝓖 ⊂ 𝒦_{γ}$, where 𝓖 is either $𝓟⁰_{β}$ or $M_{1,β}$. Here $M_{1,λ}$ denotes the class of all functions f in 𝓐 such that Re(zf''(z)) > -λ for z ∈ Δ.
Słowa kluczowe
Rocznik
Tom
84
Numer
1
Strony
27-39
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
  • Department of Mathematics, D.G. Vaishnav College, Chennai 600 106, India
autor
  • The Ramanujan Institute, University of Madras, Chennai 600 005, India
autor
  • Department of Mathematics, Indian Institute of Technology, IIT-Madras, Chennai 600 036, India
autor
  • 3A/95, Azad Nagar, Kanpur 208 002, India
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap84-1-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.