Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let N be a closed orientable n-manifold, n ≥ 3, and K a compact non-empty subset. We prove that the existence of a transversally orientable codimension one foliation on N∖K with leaves homeomorphic to $ℝ^{n-1}$, in the relative topology, implies that K must be connected. If in addition one imposes some restrictions on the homology of K, then N must be a homotopy sphere. Next we consider C² actions of a Lie group diffeomorphic to $ℝ^{n-1}$ on N and obtain our main result: if K, the set of singular points of the action, is a finite non-empty subset, then K contains only one point and N is homeomorphic to Sⁿ.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
61-69
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
autor
- Departamento de Matemática, nstituto de Matemática e Computação, Universidade de São Paulo, Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brasil
autor
- Departamento de Matemática, Instituto de Matemática e Computação, Universidade de São Paulo, Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brasil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-7