Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Sufficient conditions are obtained so that every solution of
$[y(t) - p(t)y(t-τ)]^{(n)} + Q(t)G(y(t-σ)) = f(t)$
where n ≥ 2, p,f ∈ C([0,∞),ℝ), Q ∈ C([0,∞),[0,∞)), G ∈ C(ℝ,ℝ), τ > 0 and σ ≥ 0, oscillates or tends to zero as $t→ ∞ $. Various ranges of p(t) are considered. In order to accommodate sublinear cases, it is assumed that $∫_0^{∞} Q(t)dt = ∞$. Through examples it is shown that if the condition on Q is weakened, then there are sublinear equations whose solutions tend to ±∞ as t → ∞.
$[y(t) - p(t)y(t-τ)]^{(n)} + Q(t)G(y(t-σ)) = f(t)$
where n ≥ 2, p,f ∈ C([0,∞),ℝ), Q ∈ C([0,∞),[0,∞)), G ∈ C(ℝ,ℝ), τ > 0 and σ ≥ 0, oscillates or tends to zero as $t→ ∞ $. Various ranges of p(t) are considered. In order to accommodate sublinear cases, it is assumed that $∫_0^{∞} Q(t)dt = ∞$. Through examples it is shown that if the condition on Q is weakened, then there are sublinear equations whose solutions tend to ±∞ as t → ∞.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
101-110
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Department of Mathematics, Berhampur University, Berhampur 760007, Orissa, India
autor
- Department of Mathematics, Khallikote (Autonomous) College, Berhampur 760001, Orissa, India
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-2-1