Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A definable subset of a Euclidean space X is called perfectly situated if it can be represented in some linear system of coordinates as a finite union of (graphs of) definable 𝓒¹-maps with bounded derivatives. Two subsets of X are called simply separated if they satisfy the Łojasiewicz inequality with exponent 1. We show that every closed definable subset of X of dimension k can be decomposed into a finite family of closed definable subsets each of which is perfectly situated and such that any two different sets of the decomposition are simply separated and their intersection is of dimension < k.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
171-184
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Institute of Mathematics, Jagiellonian University, 30-059 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-2-7