Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We consider the stochastic differential equation
(1) $du(t) = a(u(t),ξ(t))dt + ∫_{Θ} σ(u(t),θ) 𝓝_p(dt,dθ)$ for t ≥ 0
with the initial condition u(0) = x₀. We give sufficient conditions for the existence of an invariant measure for the semigroup ${P^t}_{t≥0}$ corresponding to (1). We show that the existence of an invariant measure for a Markov operator P corresponding to the change of measures from jump to jump implies the existence of an invariant measure for the semigroup ${P^t}_{t≥0}$ describing the evolution of measures along trajectories and vice versa.
(1) $du(t) = a(u(t),ξ(t))dt + ∫_{Θ} σ(u(t),θ) 𝓝_p(dt,dθ)$ for t ≥ 0
with the initial condition u(0) = x₀. We give sufficient conditions for the existence of an invariant measure for the semigroup ${P^t}_{t≥0}$ corresponding to (1). We show that the existence of an invariant measure for a Markov operator P corresponding to the change of measures from jump to jump implies the existence of an invariant measure for the semigroup ${P^t}_{t≥0}$ describing the evolution of measures along trajectories and vice versa.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
31-44
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Institute of Mathematics, Silesian University, 40-007 Katowice, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-3