Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We introduce the notion of the Shilov boundary for some subfamilies of upper semicontinuous functions on a compact Hausdorff space. It is by definition the smallest closed subset of the given space on which all functions of that subclass attain their maximum. For certain subfamilies with simple structure we show the existence and uniqueness of the Shilov boundary. We provide its relation to the set of peak points and establish Bishop-type theorems. As an application we obtain a generalization of Bychkov's theorem which gives a geometric characterization of the Shilov boundary for q-plurisubharmonic functions on convex bounded domains.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
17-39
Opis fizyczny
Daty
wydano
2016
Twórcy
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap3695-1-2016