Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.), Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439-455] proved the following asymptotic formula: if $Ω ⊂ ℝ^d$ is a smooth bounded domain, 1 ≤ p < ∞ and $f ∈ W^{1,p}(Ω)$, then
$lim_{s↗1} (1-s)∫_{Ω} ∫_{Ω} (|f(x)-f(y)|^p)/(||x-y||^{d+sp}) dxdy = K∫_{Ω} |∇f(x)|^p dx$,
where K is a constant depending only on p and d.
The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space $B_p^{s,p}(Ω)$. The purpose of this paper is to obtain analogous asymptotic formulae for some other equivalent seminorms, defined using coefficients of the expansion of f with respect to a wavelet or wavelet type basis. We cover both the case of the usual (isotropic) Besov and Sobolev spaces, and the Besov and Sobolev spaces with dominating mixed smoothness.
$lim_{s↗1} (1-s)∫_{Ω} ∫_{Ω} (|f(x)-f(y)|^p)/(||x-y||^{d+sp}) dxdy = K∫_{Ω} |∇f(x)|^p dx$,
where K is a constant depending only on p and d.
The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space $B_p^{s,p}(Ω)$. The purpose of this paper is to obtain analogous asymptotic formulae for some other equivalent seminorms, defined using coefficients of the expansion of f with respect to a wavelet or wavelet type basis. We cover both the case of the usual (isotropic) Besov and Sobolev spaces, and the Besov and Sobolev spaces with dominating mixed smoothness.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
101-144
Opis fizyczny
Daty
wydano
2016
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, Branch in Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap3540-11-2015